Computer-assisted pit-pattern classification in different wavelet domains for supporting dignity assessment of colonic polyps

نویسندگان

  • Michael Häfner
  • Roland Kwitt
  • Andreas Uhl
  • Friedrich Wrba
  • Alfred Gangl
  • Andreas Vécsei
چکیده

In this paper, we show that zoom-endoscopy images can be well classified according to the pit-pattern classification scheme by using texture-analysis methods in different wavelet domains. We base our approach on three different variants of the wavelet transform and propose that the color-channels of the RGB and LAB color model are an important source for computing image features with high discriminative power. Color-channel information is incorporated by either using simple feature vector concatenation and cross-cooccurrence matrices in the wavelet domain. Our experimental results based on k-Nearest Neighbor classification and forward feature selection exemplify the advantages of the different wavelet transforms and show that color-image analysis is superior to grayscale image analysis regarding our medical image classification problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Pit-Pattern Classification of Endoscopy Images by a Combination of Experts

The diagnosis of colorectal cancer is usually supported by a staging system, such as the Duke or TNM system. In this work we discuss computer-aided pit-pattern classification of surface structures observed during high-magnification colonoscopy in order to support dignity assessment of colonic polyps. This is considered a quite promising approach because it allows in vivo staging of colorectal l...

متن کامل

Delaunay triangulation-based pit density estimation for the classification of polyps in high-magnification chromo-colonoscopy

In this work we propose a method to extract shape-based features from endoscopic images for an automated classification of colonic polyps. This method is based on the density of pits as used in the pit pattern classification scheme which is commonly used for the classification of colonic polyps. For the detection of pits we employ a noise-robust variant of the LBP operator. To be able to be rob...

متن کامل

Second-Order Statistical Texture Representation of Asphalt Pavement Distress Images Based on Local Binary Pattern in Spatial and Wavelet Domain

Assessment of pavement distresses is one of the important parts of pavement management systems to adopt the most effective road maintenance strategy. In the last decade, extensive studies have been done to develop automated systems for pavement distress processing based on machine vision techniques. One of the most important structural components of computer vision is the feature extraction met...

متن کامل

Employing topographical height map in colonic polyp measurement and false positive reduction

CT Colonography (CTC) is an emerging minimally invasive technique for screening and diagnosing colon cancers. Computer Aided Detection (CAD) techniques can increase sensitivity and reduce false positives. Inspired by the way radiologists detect polyps via 3D virtual fly-through in CTC, we borrowed the idea from geographic information systems to employ topographical height map in colonic polyp m...

متن کامل

Statistical and Structural Wavelet Packet Features for Pit Pattern Classification in Zoom-Endoscopic Colon Images

We discuss features extracted from a wavelet packet decomposition for image classification. Statistical features computed from wavelet packet coefficients are compared to structural features which are derived from an image dependent wavelet packet decomposition subband structure. Primary application area is the classification of pit pattern structures in zoom-endoscopic colon imagery, while res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2009